I am a VC. Here’s my daily routine.

I am a venture capitalist. Here’s my daily routine.

8am: Wake up hungover from a crypto dinner.

While in bed, tweet how refreshed I feel from a great night on my Eightsleep and my 1-hour morning meditation.

9am: look at my reflection in the mirror and say “you are *not* getting disrupted by Tiger”. Repeat 10x, increasingly loudly.

10am: Look at the list of deal announcements on VC newsletters. Feel vaguely nauseous. “Should have done that one”. Then “oh, that one, too. And probably that one…”

11am: Haven’t tweeted in a while. Time for some thought leadership. What would Naval say?

11:30am: Debate how to reach out to a founder to tell them I “heard good things”. Email? Too cheugy. Text? Creepy. Telegram? Bit desperate. Signal? This job is so hard.

Continue reading “I am a VC. Here’s my daily routine.”

In Conversation with Mark Grover, CEO, Stemma

As the volume of data in the enterprise continues to explode, with ever large amounts stored in data warehouses and data lakes, the problem of data discovery has become an increasingly painful one. How do data analysts, data scientists and business people find not just data, but the right data for the problem they need to solve? How do they know how it was produced, how recently it was updated and whether that’s the right dataset they need to use? In addition, from an organization’s perspective, there’s a question of data governance – how to manage access in a way that preserves data security and privacy, and ensures compliance with data protection regulations (GDPR, CCPA, etc.).

Data catalogs have been a powerful response to those problems, and that category has seen renewed activity in the last couple of years with a whole new group of startup entrants.

At our most Data Driven NYC, we got a chance to chat Mark Grover, co-founder and CEO of Stemma and the co-creator of Amundsen, the leading open source data discovery and metadata engine. Mark built Amundsen while he was a product manager at Lyft and started Stemma to offer a fully managed Amundsen.

It was a fun conversation about the space. Below is the video and below that, the transcript.

Continue reading “In Conversation with Mark Grover, CEO, Stemma”

In Conversation with Aaron Katz, Co-Founder & CEO, ClickHouse

Ask anyone who spends time in the data ecosystem, and the name “ClickHouse” is one that has come up countless times in conversations over the last few years.

ClickHouse is a real-time OLAP (meaning, analytical) database that is known for its performance and scalability, and has a wide footprint of users around the world.

ClickHouse started its life at Yandex, the Russian search giant. It was originally created as an internal web analytics tool called Metrica, which evolved around 2009 into “Clickstream Data Warehouse” or ClickHouse for short.

The product was open sourced in 2016 and became a very popular project, with adoption at impressive scale by a number of companies including Yandex (10s of trillions of rows), Uber, Ebay, Cloudflare, Spotify, Deutsche Bank, and more.

ClickHouse was spun out into early 2021 into ClickHouse, Inc., a commercial company co-founded by Aaron Katz, Alexey Milovidov (ClickHouse’s creator), and Yury Izarilevsky (ex-Google VP Engineering), with a focus on bringing ClickHouse to all types of companies via a managed version.

ClickHouse Inc raised a $50M Series A announced in September, followed closely by a $250M Series B last month, in which my firm, FirstMark, participated.

It was a treat to welcome Aaron Katz, the Co-Founder and CEO of ClickHouse, Inc. to Data Driven NYC. Prior to co-founding ClickHouse, Aaron had extensive experience as a world-class sales leader, most recently as the Chief Revenue Officer at Elastic and the Senior Vice President of Enterprise Sales at Salesforce

Below is the video and below that, the transcript.

Continue reading “In Conversation with Aaron Katz, Co-Founder & CEO, ClickHouse”

2021 MAD Landscape: The Top 10 Trends

For anyone interested in a quick overview of our long-form 2021 Machine Learning, AI and Data (MAD) Landscape, here are the Cliffs Notes! My co-author John and I did a presentation at our most recent Data Driven NYC, focused on top 10 trends in this year’s landscape.

As a preview, here they are:

  • Every company is a data company
  • The big unlock: data warehouses and lakehouses
  • Consolidation vs data mesh: the future is hybrid
  • An explosive funding environment
  • A busy year in DataOps
  • It’s time for real time
  • The action moves to the right side of the warehouse
  • The rise of AI generated content
  • From MLOps to ModelOps
  • The continued emergence of a separate Chinese AI stack

Below is the video from the event, and below that, the transcript.

Continue reading “2021 MAD Landscape: The Top 10 Trends”

A guide to understanding founder/VC fundraising conversations

VCs:

“Let’s take it from the top” = I have not read your deck

“There’s a lot to unpack here” = I have no idea what you just said

“We’re a very collaborative VC firm” = who else is in?

“Before VC, I was an operator” = I was a product manager for 9 months at YouTube, 10 years after it was acquired

“We can move aggressively” = we’ll take our time unless you’re also talking to Tiger?

Continue reading “A guide to understanding founder/VC fundraising conversations”

The Data Mesh: In Conversation with Zhamak Dehghani

In the admittedly small world of people who obsess over data technologies, one of the hottest topics of the last year has been the “data mesh”.

Created by Zhamak Dehghani of ThoughtWorks, the concept struck a chord and made the rounds in countless conversations on Twitter and elswhere.

As I highlighted in the 2021 MAD Landscape, the data mesh concept is both a technological and organizational idea.  A standard approach to building data infrastructure and teams so far has been centralization: one big platform, managed by one data team, that serves the needs of business users.  This has advantages, but also can create a number of issues (bottlenecks, etc).  The general concept of the data mesh is decentralization – create independent data teams that are responsible for their own domain and provide data “as a product” to others within the organization.  Conceptually, this is not entirely different from the concept of micro-services that has become familiar in software engineering, but applied to the data domain.

It was a real treat to get to chat with Zhamak at our most recent Data Driven NYC.

Below is the video and below that, the transcript.

Continue reading “The Data Mesh: In Conversation with Zhamak Dehghani”

Red Hot: The 2021 Machine Learning, AI and Data (MAD) Landscape

Full resolution version of the landscape image here

It’s been a hot, hot year in the world of data, machine learning and AI. 

Just when you thought it couldn’t grow any more explosively, the data/AI landscape just did: rapid pace of company creation, exciting new product and project launches, a deluge of VC financings, unicorn creation, IPOs, etc.  

It has also been a year of multiple threads and stories intertwining.

One story has been the maturation of the ecosystem, with market leaders reaching large scale and ramping up their ambitions for global market domination, in particular through increasingly broad product offerings.  Some of those companies, such as Snowflake, have been thriving in public markets (see our MAD Public Company Index), and a number of others (Databricks, Dataiku, Datarobot, etc.) have raised very large (or in the case of Databricks, gigantic) rounds at multi-billion valuations and are knocking on the IPO door (see our Emerging MAD company Index – both indexes will be updated soon).

But at the other end of the spectrum, this year has also seen the rapid emergence of a whole new generation of data and ML startups.  Whether they were founded a few years or a few months ago, many experienced a growth spurt in the last year or so.  As we will discuss, part of it is due to a rabid VC funding environment and part of it, more fundamentally, is due to inflection points in the market.

In the last year, there’s been less headline-grabbing discussion of futuristic applications of AI (self-driving vehicle, etc.), and a bit less AI hype as a result.  Regardless, data and ML/AI-driven application companies have continued to thrive, particularly those focused on enterprise use cases.  Meanwhile, a lot of the action has been happening behind the scenes on the data and ML infrastructure side, with entire new categories (data observability, reverse ETL, metrics stores, etc.) appearing and/or drastically accelerating.

To keep track of this evolution, this is our eighth annual landscape and “state of the union” of the data and AI ecosystem – co-authored this year with my FirstMark colleague John Wu.  (For anyone interested, here are the prior versions: 2012, 2014, 2016, 2017, 2018, 2019 (Part I and Part II) and 2020.)

For those who have remarked over the years how insanely busy the chart is, you’ll love our new acronym – Machine learning, Artificial intelligence and Data (MAD) – this is now officially the MAD landscape!

Continue reading “Red Hot: The 2021 Machine Learning, AI and Data (MAD) Landscape”

Dataiku’s Series E: Ushering the Era of Everyday AI

Today, Dataiku is announcing a major new financing – a total of $400m at a $4.6B valuation, led by Tiger Global (which had also invested in the company’s Series D), alongside a great group of existing and new investors.

While financings are ultimately just milestones, this is certainly a testament to the remarkable progress the company has been making towards becoming a major global software player, as it has scaled to hundreds of customers around the world and some 750 employees (and yes, hiring a lot more).

Beyond the headlines and high-fives, what is the story? Here’s a quick industry backgrounder and reminder for anyone new to the company.

A huge part of the data world has been historically focused on business intelligence, with both historical players (Tableau, Microsoft’s Power BI, Google Looker) and newer players (SiSense, Mode, etc.). Business intelligence tools enable you to analyze the past and the present of your business: “which region performed best last quarter?”, “who are our best salespeople?” etc. This is sometimes referred to as descriptive analytics.

Dataiku is a leader in another part of the data world, which different people call different names: data science, enterprise AI (for artificial intelligence), enterprise machine learning. Beyond the semantics, the core idea is to make it possible to asnwer questions about the future of your business, based on the analysis of historical data: “which customers are most likely to buy this product?”, “which customers are most likely to churn?”, “which transaction is most likely to be fraudulent?”, “which region is most likely to show strong demand this month?”. This area is sometimes referred to as predictive analytics.

Continue reading “Dataiku’s Series E: Ushering the Era of Everyday AI”

Congrats, Sketchfab!

This morning, Sketchfab announced that it was joining the Epic Games family.

From inception, Sketchfab has been a visionary company in the creator economy, pioneering the emergence of 3D as a key format on the web. It built the best 3D viewer on the market, and leveraged it to build a remarkable community of 3D creators and enthusiasts all around the world. It navigated the ups and downs of the “VR Winter” and, through entrepreneurial grit and great execution, emerged on the other side a stronger, profitable company – a journey that CEO Alban Denoyel documented with remarkable transparency.

Today, Sketchfab is the center of the 3D world, addressing the need of individual creators and companies alike: a 5M user community, a huge library of models, a marketplace to buy and sell 3D models and a fast-growing enterprise business.

Epic is the perfect partner for Sketchfab. It has epic (yes) plans for building the Metaverse (see Matthew Ball’s excellent essays on the Metaverse here and Epic here). The Metaverse will be a heavy consumer of 3D, AR and VR content, and Sketchfab fits perfectly within that vision. Sketchfab will continue operating largely as an independently branded service, and will be able to access Epic’s resources and distributions capabilities.

Continue reading “Congrats, Sketchfab!”

In Conversation with Elementl (Dagster), Meroxa and Superconductive (Great Expectations)

This last year has seen tremendous levels of activity for early stage startups in the data infrastructure ecosystem. At our most recent Data Driven NYC, we featured some of the rising stars:

  • Nick Schrock, Founder & CEO, Elementl (Dagster) | Elementl is building the next generation of open source data tools including Dagster, the open-source data orchestrator for machine learning, analytics, and ETL.
  • DeVaris Brown, Founder & CEO, Meroxa | Meroxa is a real-time data platform that gives data teams the tools they need to build real-time infrastructure in minutes.
  • Abe Gong, Founder & CEO, Superconductive (Great Expectations) | Superconductive is the team behind Great Expectations, the leading open source tool for defeating pipeline debt through data testing, documentation, and profiling. The company’s mission is to revolutionize the speed and integrity of data collaboration.
Continue reading “In Conversation with Elementl (Dagster), Meroxa and Superconductive (Great Expectations)”

Quick S-1 Teardown: Confluent

A member of our Emerging MAD Index of companies on their path to an IPO, Confluent is a very interesting company in a strategic part of the data space, providing infrastructure for real-time data streaming – what it nicely calls “data in motion”, in contrast to the world of batch processing or “data at rest”.

I had the pleasure of hosting the company’s co-founder and then CTO, Neha Narkhede, at Data Driven NYC back in 2016, and her great talk remains entirely relevant to understand the premise behind the company and its core technical foundation.

Confluent recently released its full S-1, and will trade under the stock ticker CFLT on the NASDAQ.

In the same vein as previous “Quick S-1 teardowns” (see Palantir, Snowflake, nCino), here are some high level thoughts and quick highlights, from my colleague John Wu and I.

Continue reading “Quick S-1 Teardown: Confluent”

In Conversation with Ali Ghodsi, CEO, Databricks

Databricks is an enterprise software giant in the making. Most recently valued at $28B in a $1B fundraise announced in February 2021, the company has global ambitions in the data and AI space.

An unlikely story of a company started by seven co-founders, most of whom were academics, built around the Spark open source project, Databricks is heading towards a monster IPO that will accelerate its rivalry with its chief competitor, Snowflake.

I had a chance to interview then co-founder and then CEO Ion Stoica at Data Driven NYC back in 2015, when Databricks was a company very aggressively courted by VCs, but still very early in commercial traction.

It was a real treat to catch up with Ali Ghodsi, who took over as CEO in 2015.

Below is the video and below that, the transcript.

Continue reading “In Conversation with Ali Ghodsi, CEO, Databricks”

Congratulations, Text IQ!

A couple of years ago, FirstMark led the Series A of Text IQ, an impressive AI startup focused on the management of unstructured data in the enterprise for legal, privacy and compliance purposes. The company was co-founded by Apoorv Agarwal (CEO, left) and Omar Haroun (COO, right), and had managed to grow both fast and profitably after raising a seed from our friends at Floodgate.

At its core, Text IQ leverages unsupervised learning to identify sensitive information (privileged documents, PII, PHI, etc.) in large amounts of unstructured data – a challenge that AI is uniquely equipped to solve.

After its Series A, Text IQ continued to make strong progress, building a great team, evolving the product into an enterprise-grade platform and securing an impressive list of Fortune 1000 customers.

Not surprisingly, this attracted the attention not just from potential Series B investors, but also acquirers.

Today, Text IQ is announcing its acquisition by Relativity, a leader in the discovery and compliance market, which just announced a large financing led by Silver Lake.

Continue reading “Congratulations, Text IQ!”

In Conversation with Victor Riparbelli (CEO) and Matthias Niessner (Co-Founder), Synthesia

One of the most exciting emerging areas for AI is content generation. Powered by anything from GANs to GPT-3, a new generation of tools and platforms enables the creation of highly customizable content at scale – whether text, images, audio or video – opening up a broad range of consumer and enterprise use cases.

At FirstMark, we recently announced that we had led the Series A in Synthesia, a startup providing impressive AI synthetic video generation capabilities to both creators and large enterprises.

As a follow up to our investment announcement, we had the pleasure of hosting two of Synthesia’s co-founders, Victor Riparbelli (CEO) and Matthias Niessner (co-founder and a Professor of Computer Vision at Technical University of Munich).

Some of topics we covered:

  • The rise of Generative Adversarial Networks (GANs) in AI
  • Use cases for synthetic video in the enterprise
  • Synthetic videos vs deep fakes
  • What’s next in the space

Below is the video and below that, the transcript.

Continue reading “In Conversation with Victor Riparbelli (CEO) and Matthias Niessner (Co-Founder), Synthesia”

In conversation with Dev Ittycheria, CEO, MongoDB

MongoDB’s path from unlikely NYC enterprise tech startup to global category leader has been amazing to watch.

I’ve had the pleasure of hosting two of MongoDB’s co-founders over the years, first Dwight Merriman back in 2012 (here) and then CTO Eliot Horowitz in 2016 (here). So it was a real treat this time to get to chat with CEO Dev Ittycheria, who has been leading the company since 2014, and it particular has presided over the company’s remarkable ride in public markets since its 2017 IPO.

In addition to being a truly world-class CEO, Dev has had an outsized impact on the New York tech scene, as he’s been playing a central role both at MongoDB and also at Datadog, where he’s been a long time board member (after leading the company’s Series B back in 2014).

We had a wide-ranging conversation where we covered:

  • Dev’s journey as a CEO and investor
  • The evolution of enterprise tech in New York
  • MongoDB’s database as a service offering, Atlas
  • Newest products and product roadmap
  • Open source
  • GTM strategies, bottoms up vs top down
  • Lessons in scaling the team
  • Being a student of the game rather than a master of the game
Continue reading “In conversation with Dev Ittycheria, CEO, MongoDB”