The New Gold Rush? Wall Street Wants your Data



A few months ago, Foursquare achieved an impressive feat by predicting, ahead of official company results, that Chipotle’s Q1 2016 sales would be down nearly 30%. Because it captures geo-location data from both check-ins and visits through its apps, Foursquare was able to extrapolate foot-traffic stats that turned out to be very accurate predictors of financial performance.
That a social media company could be building a data asset of immense value to Wall Street is part of an accelerating trend known as “alternative data”. As just about everything in our lives is getting sensed and captured by technology, financial services firms have been turning their attention to startups, with the hope of mining their data to extract the type of gold nuggets that will enable them to beat the market.
Could working with Wall Street be a business model for you?
The opportunity is open to a wide range of startups.  Many tech companies these days generate an interesting “data exhaust” as a by-product of their core activity.  If your company offers a payment solution, you may have interesting data on what people buy. A mobile app may accumulate geo-location data on where people shop or how often they go to the movies.  A connected health device may know who gets sick when and where.  A commerce company may have data on trends and consumer preferences. A SaaS provider may know what corporations purchase, or how many employees they hire, in which region. And so on and so forth.
At the same time, this is a tricky topic, with a lot of misunderstandings. The hedge fund world is very different from the startup world, and a lot gets lost in translation.  Rumors about hedge funds paying “millions” for data sets abound, which has created a distorted perception of the size of the financial opportunity.  A fair number of startups I speak with do incorporate idea of selling data to Wall Street into their business plan and VC pitches, but how that would work exactly remains generally very fuzzy.
If you’re one of the many startups sitting on a growing data asset and trying to figure out whether you can make money selling it to Wall Street, this post is for you: a deep dive to provide context, clarify concepts and offer some practical tips.

Continue reading “The New Gold Rush? Wall Street Wants your Data”

HyperScience and the Enterprise AI Opportunity


Today our portfolio company HyperScience is coming out of stealth and talking a bit more about what they’ve been working on for the last couple of years. We have been involved for a little while already as lead Series A investors, and we are excited to now be joined today by our friends at Felicis, a great addition to a strong syndicate from both coasts that also includes Shana Fisher (Third Kind) who led the seed, AME Cloud Ventures, Slow Ventures, Acequia, Box Group and Scott Belsky.  The company is announcing today a total of $18M in Series A investment.

HyperScience offers AI solutions targeting Global 2000 corporations and government institutions. Their products enable those customers to automate or accelerate a lot of dusty back office processes, particularly those that involve the manipulation and triage of large amounts of documents and images.

Continue reading “HyperScience and the Enterprise AI Opportunity”

Dataiku or the Early Maturation of Big Data

In the early days of Big Data (call it 2009 to 2014), a lot had to do with experimentation and discovery.  Early enterprise adopters would play around with Hadoop, the then-new open source framework with a funny name, trying to figure out where the technology fit in the broader landscape of databases and data warehouses.  People would also try to figure out what a “data scientist” was – a statistician who can code? An engineer who knows some math?  It was a time of hype, immature products and trial and error.

Continue reading “Dataiku or the Early Maturation of Big Data”

Building an AI Startup: Realities & Tactics


Artificial intelligence is, of course, all the rage in tech circles, and the press is awash in tales of AI entrepreneurs striking it rich after being acquired by one of the giants, often early in the life of their startups.

As always, the reality of building a startup is different, especially when one aims to build a self-standing company for the long term.  The path to success in AI requires not just technical prowess but also careful thinking and execution through a range of strategic and tactical questions that are specific to this domain and market.

One possible framework to think through these topics is this “5P”list: Positioning (finding blue ocean), Product, Petabytes (data), Process (social engineering) and People.

Continue reading “Building an AI Startup: Realities & Tactics”

Investing in Frontier Tech


Over the last few months, the usual debate around unicorns and bubbles seems to have been put on hold a bit, as fears of a major crash have thankfully not materialized, at least for now.

Instead another discussion has emerged, one that’s actually probably more fundamental. What’s next in tech? Which areas will produce the Googles and Facebooks of the next decade?

What’s prompting the discussion is a general feeling that we’re on the tail end of the most recent big wave of innovation, one that was propelled by social, mobile and cloud.  A lot of great companies emerged from that wave, and the concern is whether there’s room for a lot more “category-defining” startups to appear.  Does the world need another Snapchat? (see Josh Elman’s great thoughts here).  Or another marketplace, on-demand company, food startup, peer to peer lending platform? Isn’t there a SaaS company in just about every segment now? And so on and so forth.

One alternative seems to be “frontier tech”: a seemingly heterogeneous group that includes artificial intelligence, the Internet of Things, augmented reality, virtual reality, drones, robotics, autonomous vehicles, space, genomics, neuroscience, and perhaps the blockchain, depending on who you ask.

Continue reading “Investing in Frontier Tech”

Phosphorus and the Rise of the New Genomics Startup


As we are perhaps reaching the end of a cycle of innovation in tech – the one that resulted from the simultaneous emergence of social, mobile and cloud – and collectively pondering what’s next, one of the areas I’ve found particularly exciting recently is the intersection of Big Data and life sciences.

A little over two years ago, in connection with my investment in Recombine, a genomics startup, I wrote (here) about another powerful combination of trends: the sharp drop in the cost of sequencing the human genome, the maturation of Big Data technologies, and the increasing commoditization of wet lab work.

The fundamental premise was, and still very much is, as follows:

Continue reading “Phosphorus and the Rise of the New Genomics Startup”

The NYC Tech Ecosystem: Catching Up to the Hype


I’m fascinated by tech ecosystems, and the network effects behind them.  I wrote about Berlin (here) and about Paris (here)  But of course, as an NYC venture capitalist, I’m particularly interested in New York – I wrote about the strong NYC data community a while back (here), and about NYC as a great home for European entrepreneurs (here).

The New York tech ecosystem is in an interesting place right now.  The emergence of NYC was a big story at tech conferences and in the press maybe four or five years ago.   Fast forward to today: on the one hand, NYC has become the clear Number 2 to the Bay Area; on the other hand, it’s hard not to notice that things have gone a bit quiet – at a minimum,  we seem to be past the stage of unbridled enthusiasm.

The bull case is that New York is now firmly established as a startup hub, and therefore it is less press-worthy than when it was first emerging; to wit, entrepreneurial activity and VC investment levels have never been higher (for context, with $1.9B invested, Q1 2016 saw almost 7x more VC investment in NYC than Q1 2012)

The bear case is that, for all the progress, NYC still suffers from many of the same issues that have plagued it for years: a relative dearth of $1BN+ exits, a lack of local anchor companies that can serve as acquirers, and a comparatively lower concentration of talent, particularly when it comes to not just starting, but actually scaling, startups.

Continue reading “The NYC Tech Ecosystem: Catching Up to the Hype”

Internet of Things: Are We There Yet? (The 2016 IoT Landscape)


Is the Internet of Things the world’s most confusing tech trend? On the one hand, we’re told it’s going to be epic, and soon – all predictions are either in tens of billions (of connected devices) and trillions (of dollars of economic value to be created). On the other hand, the dominant feeling expressed by end users (including at this year’s CES show, arguably the bellwether of the industry) is essentially “meh” – right now the IoT feels like an avalanche of new connected products, many of which seem to solve trivial, “first world” problems: expensive gadgets that resolutely fall in the “nice to have” category, rather than “must have”.  And, for all the talk about a mega tech trend, things seem to be moving at the speed of molasses, with little discernible progress year on year.

Part of the problem is perhaps one of semantics. While gadgets are indeed part of the category (and quite often very large markets onto themselves), the Internet of Things (which we define as any “connected hardware” other than desktops, laptops and smartphones) is a much broader, and deeper, trend that cuts across both the consumer, enterprise and industrial spaces. Fundamentally, the Internet of Things is about the transformation of any physical object into a digital data product. Once you attach a sensor to it, a physical object (whether a tiny one like a pill that goes through your body, or a very large one like a plane or building) starts functioning a lot like any other digital product – it emits data about its usage, location and state; it can be tracked, controlled, personalized and upgraded remotely; and, when coupled with all the progress in Big Data and artificial intelligence, it can become intelligent, predictive, collaborative and in some cases autonomous.  An entirely new way of interacting with our world is emerging. The importance of the IoT perhaps emerges more clearly when you think about it as the final chapter of “software eats the world”, where everything gets connected.

Continue reading “Internet of Things: Are We There Yet? (The 2016 IoT Landscape)”

Is Big Data Still a Thing? (The 2016 Big Data Landscape)


In a tech startup industry that loves its shiny new objects, the term “Big Data” is in the unenviable position of sounding increasingly “3 years ago”.   While Hadoop was created in 2006, interest in the concept of “Big Data” reached fever pitch sometime between 2011 and 2014.  This was the period when, at least in the press and on industry panels, Big Data was the new “black”, “gold” or “oil”.  However, at least in my conversations with people in the industry, there’s an increasing sense of having reached some kind of plateau.  2015 was probably the year when the cool kids in the data world (to the extent there is such a thing) moved on to obsessing over AI and its many related concepts and flavors: machine intelligence, deep learning, etc.

Beyond semantics and the inevitable hype cycle, our fourth annual “Big Data Landscape” (scroll down) is a great opportunity to take a step back, reflect on what’s happened over the last year or so and ponder the future of this industry.

In 2016, is Big Data still a “thing”? Let’s dig in.

Continue reading “Is Big Data Still a Thing? (The 2016 Big Data Landscape)”

The Power of Data Network Effects

In the furiously competitive world of tech startups, where good entrepreneurs tend to think of comparable ideas around the same time and “hot spaces” get crowded quickly with well-funded hopefuls, competitive moats matter more than ever.  Ideally, as your startup scales, you want to not only be able to defend yourself against competitors, but actually find it increasingly easier to break away from them, making your business more and more unassailable and leading to a “winner take all” dynamic.  This sounds simple enough, but in reality many growing startups, including some well-known ones, experience exactly the reverse (higher customer acquisition costs resulting from increased competition, core technology that gets replicated and improved upon by competitors that started later and learned from your early mistakes, etc.).

While there are various types of competitive moats, such as a powerful brand (Apple) or economies of scale (Oracle), network effects are particularly effective at creating this winner takes all dynamic, and have been associated with some of the biggest success stories in the history of the Internet industry.

Network effects come in different flavors, and today I want to talk about a specific type that has been very much at the core of my personal investment thesis as a VC, resulting from my profound interest in the world of data and machine learning: data network effects.

Continue reading “The Power of Data Network Effects”

Playing “fake VC” (or the portfolio approach to getting a job in venture capital)

How does one get a VC job?

Method 1:  Start a tech company, drive it a multi-billion dollar success. Drop a few bon mots on Twitter to your robust group of followers, make visionary statements during your TechCrunch Disrupt fireside chat, and build a reputation as a helpful mentor to entrepreneurs.  Then wait by your phone as major firms call you with General Partner offers.  Or start your own firm.

Method 2: Welcome to the long hard slog.  And read on.

Continue reading “Playing “fake VC” (or the portfolio approach to getting a job in venture capital)”

Sketchfab and the democratization of 3D content

We’re about to see a lot more 3D content in our digital lives.  Various trends, some years in the making, are now intersecting to make this a near-term reality.

On the production side, 3D has of course existed for many years – this has been, in particular, the world of Computer Aided Design (CAD), which originated in part from MIT’s Sketchpad project in the early sixties.  In one form or another, 3D has been used as a professional format across many industries, such as architecture, engineering, construction, and entertainment. Creation of 3D content (even for consumer-facing products like gaming) has remained largely the province of a comparatively small group of specialized professionals. Continue reading “Sketchfab and the democratization of 3D content”

Hardware Startups: The VC Perspective

Among all the excitement for the Internet of Things and the resurgence of hardware as an investable category, venture capitalists, many of whom new to the space, have been re-discovering the opportunities and challenges of working alongside entrepreneurs to build hardware companies.  Below are the slides that David Rogg and I prepared for the recent Connected Conference, a great global event held in Paris.  They’re a good snapshot of how someone like me thinks about the hardware space, mid-2015.



The “Straight to A” Round

The venture financing path has evolved incredibly fast over the last 18 months. In this very busy financing market, what used to be a reasonably well understood progression from a seed round to a Series A to a Series B, etc. has now morphed into a more complex nomenclature of pre-seeds ($500k or less), crowdfunding rounds (especially for hardware), seeds ($1M-$2M, 6-9 months after the pre-seed), seed primes (an extra $1M or so, 12-18 months after the seed), Series A (now routinely $10-$12M in size, occasionally up to $15M), Series A-1, Series B, C, D, E, F etc. (as companies remain private longer).

The latest entrant in this rapidly evolving nomenclature seems to be what I’d call the “Straight to A” round, where the founders skip the seed stage altogether and raise directly a $5M-$10M Series A, often before building anything, sometimes even before incorporating a company. I had seen it here and there in the past, but it now seems to have become an accelerating trend. Continue reading “The “Straight to A” Round”